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Abstract. We study when a cosmological constant is a natural issue if it is mimicked
by the potential of a massive Hyperextended Scalar Tensor theory with a perfect fluid
for Bianchi type I and V models. We then deduce a reciprocal Wald theorem giving
the conditions such that the potential tends to a non vanishing constant when the
gravitational function varies. We also get the conditions allowing the potentiel to vanish
or diverge.

PACS: 04.50.+h, 98.80.Cq, 11.27.+d

1 Introduction

In this work, we look for the potential asymptotical behaviours when we consider
a Hyperextended Scalar Tensor theory with a massive scalar field and a perfect
fluid for the Bianchi type I and V models .

Recent observations have shown that Universe dynamics is accelerated [1,
2]. This behaviour brings interest on a new standard model which takes into
account a cosmological constant Λ. Hence, it becomes more and more urgent
to find an answer to the cosmological constant problem consisting in the huge
discrepancy between the observed value of Λ and its much larger values predicted
by particle physics models at early times. One way to study it is to consider a
scalar tensor theory with a massive scalar field whose potential U mimics the
evolution of a dynamical Λ and is thus able to tend to a constant for late times.
Scalar tensor theories are a prediction of particle physics theories which admit
them as low energy limits and, most of time, also imply that the gravitational
constant G is a varying quantity. The most famous scalar tensor theory with
varying G is the Brans-Dicke theory [3] and has been studied in the sixties: the
gravitational function varies as the inverse of a scalar field φ and the coupling
between φ and the metric is the Brans-Dicke coupling constant ω. Although
it is a very interesting theory it is also a very special one. Most of time, low
energy limits of particle physics theories imply different forms for G and ω. For
instance some string theories predict that G and ω should respectively evolve as
e−φ and φe−φ. Presently, if we consider that our Universe is correctly described
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by a scalar tensor theory, nobody knows what should be the exact forms of the
three functions G, ω and U with respect to φ. Thus, it seems advantageous to
consider them as unspecified functions of the scalar field and to use observations
to constraint their asymptotical forms. Generally speaking, the class of theories
defined by unknown forms of G, ω and U is called Hyperextended Scalar Tensor
theories (HST) [4] and can be thought of as a modern extension of Dirac’s ideas
on time variation of constants of nature [5]. This subject has gained renewed
interest since the works of [6].

What teach us the observations about the asymptotical behaviours of G, ω
and U? Concerning G, variation measurements of the gravitational function show
that it should tend to a constant. Hence, Viking lander ranging or pulsar-white
dwarf binary give ĠG−1 = 10−12yr−1 (see [7] for references). It means that the
scalar field would become minimally coupled at late time or that G is vanishing
as implied by dimensional analysis of Dirac or variation of fine structure constant
[8]. For ω, the solar system tests and some theoretical studies of nucleosynthesis
for scalar tensor theories [9] show that it should be larger than 500. Moreover,
future observations of neutron stars spiralling into massive black holes [10] could
give values larger than 240000. For the potential, as written above, it should tend
to a cosmological constant, vanishing or not. To determine this last point, more
precise measurements on Λ variation should be performed.

What about the geometrical framework of this paper? The standard model
is based on the assumptions that our Universe is perfectly homogeneous and
isotropic and thus described by FLRW metrics. BOOMERANG [11] and WMAP
[2] observations have shown that this description was already correct during the
last scattering period. However, FLRW models are very special ones and their
behaviour close to singularities is far less general than the one of other models
that do not rest on such symetry. Hence, it seems more reasonable to suppose
that Universe has naturally evolved toward isotropy and homogeneity at late
times but was initially not so symmetric. One way to generalise FLRW geome-
try is to keep only the homogeneity assumption. Bianchi models describe such
geometry. The most realistic choice would be to consider fully inhomogeneous
models. However, they do not have been fully classified. They lack of symetry
contrary to the Bianchi models whose approach of singularity could be shared by
most of the inhomogeneous models. Bianchi’s classification includes nine types.
Some of them are particularly interesting since they share the same structure
constants as the FLRW models and thus may isotropise toward them. Hence the
Bianchi type I, V and IX models may respectively tend toward flat, open and
closed FLRW models. In this work we will choose to study the two first ones.

The goal of this paper will be to look for the conditions such that the po-
tential tends to a cosmological constant when Bianchi type I or V models are
considered with a non minimally coupled massive scalar field and a perfect fluid.
If this constant is asymptotically vanishing, one possible answer to the cosmo-
logical constant problem is that the Universe is old. If it is not vanishing, the
cosmological constant problem may persist but if the constant is fine tuned. In
any case, the potential must tend to a constant so that an answer to this problem
could exist in the HST framework. To reach our goal, we will need to express the
field equations solutions as some functions of G and of the isotropic part of the
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metric, eΩ . Then we will look for conditions on these quantities such that the
potential tends to a constant. This paper is organised as follows. In Sect. 2 we
write the HST field equations for the Bianchi type I and V models. In Sect. 3
we determine their solutions with help of quadratures depending on G, Ω and φ.
In Sect. 4 we establish all the possible asymptotical behaviours for the potential
depending on inequalities between Ω and G. We discuss the results in the last
section.

2 Field equations

For any Bianchi model, the diagonal form of their metric may be written as:

ds2 = −dt2 + gµµ(ωµ)2 = −dt2 + e2α(ω1)2 + e2β(ω2)2 + e2γ(ω3)2 (1)

Here, the ωi are the 1-forms specifying the Bianchi type I or V models. For the
Bianchi type I model, they are dx, dy and dz, the structure constants beeing
zero. For the Bianchi type V model, we have chosen as basis ω1 = dx, ω2 = e−xdy
and ω3 = e−xdz from which we deduce that all the structure constants are zero
but C2

12 = −C2
21 = C3

13 = −C3
31 = −1. Following Misner [12], we will use the

decomposition of each metric function into an isotropic and anisotropic part:

α = Ω + β+

β = Ω + β−
γ = Ω − β+ − β−

The HST action with a potential and a perfect fluid is written:

S =
∫

(G−1R − ωφ−1φ,µφ,µ − U + 16πLm)
√−g (2)

G is the gravitational coupling function, ω the Brans-Dicke coupling function,
U the potential and Lm the Lagrangian density of the perfect fluid. Varying (2)
with respect to the metric functions and scalar field, we get respectively:

Rµν − 1
2
gµνR = G

[
ω

φ
φ,µφ,ν − ω

2φ
φ,λφλgµν + (G−1),µ;ν − gµν�(G−1)

−1
2
Ugµν +

8π

c4 Tµν

]
(3)

φ̇2
[
−ωφ

φ
+

ω

φ2 − G(G−1)φ
ω

φ

]
+

2ω

φ
�φ

+3G(G−1)φ�(G−1) + 2GG−1
φ U − Uφ − 8π

c4 GG−1
φ T = 0 (4)

where Tµν = (ρ+p)uµuν +gµνp is the energy-momentum tensor, ρ the density, p
the pressure, u the fluid velocity and the dot means a derivative with respect to
t. In this work, we will consider a perfect fluid with equation of state p = (δ−1)ρ
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and δ ∈ [1, 2]. For a radiation or matter dominated Universe, we have respectively
δ = 4/3 or δ = 1. Consequently, from the energy impulsion conservation law
T 0µ; µ = 0, we deduce that ρ = e−3δΩ . We define the τ time by dt = eα+β+γdτ
and introduce it in (3). It yields for the spatial field equations components:

α′′G−1 + α′(G−1)′ + (1/2G−1)′′ − 2σG−1e2β+2γ

− e6Ω
[
1/2U + 4π(2 − δ)ρ0e

−3δΩ
]

= 0

β′′G−1 + β′(G−1)′ + 1/2(G−1)′′ − 2σG−1e2β+2γ

− e6Ω
[
1/2U + 4π(2 − δ)ρ0e

−3δΩ
]

= 0

γ′′G−1 + γ′(G−1)′ + 1/2(G−1)′′ − 2σG−1e2β+2γ

− e6Ω
[
1/2U + 4π(2 − δ)ρ0e

−3δΩ
]

= 0

A prime means a derivative with respect to τ and σ is equal to 0 or 1 depending
on respectively Bianchi type I or V models. The constraint equation is written:

α′β′ + α′γ′ + β′γ′ + 3Ω,GG−1, + 3σe2β+2γ

− 1/2Ge6ΩU − 1/2Gωφ′2φ−1 − 8πρ0Ge3(2−δ)Ω = 0 (5)

The Bianchi type V model has an additional constraint which is:

2α′ − β′ − γ′ = 0 (6)

A first integral of the Klein-Gordon Eq. (4) is contained in the constraint Eq. (5).
In the next section, we will express the field equations solutions depending on
G, Ω and φ.

3 Solution of the field equations as functions of G, Ω
and φ

We begin to calculate the anisotropic parts β± of the metric. Using the above
parametrisation and adding the three spatial field equations components, we get:

3Ω′′G−1 + 3Ω′(G−1)′ + 3/2(G−1)′′ − 6σG−1e2β+2γ

− 3e6Ω
[
1/2U + 4πρ0(2 − δ)e−3δΩ

]
= 0 (7)

We deduce from this expression that:

−Ω′G−1 =
∫

(1/2(G−1)′′ − 2σG−1e2β+2γ − e6Ω(1/2U + 4πρ0(2 − δ)e−3δΩ))dτ

Taking into account the Bianchi type V additional constraint (6), we get for
this model that β+ = β+1 is a constant, showing that anisotropy is mainly
described by the function β−. In this case, the metric takes the form ds2 =
−dt2 + e2Ω(ω1)2 + e2Ω+2β−(ω2)2 + e2Ω−2β−(ω3)2. Introducing expression (3) in
the second spatial component, we get after integration:

β− = β−0

∫
Ge−3Ωdt + β−1 (8)
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where β−0 and β±1 are integration constants. This expression is valid for both
Bianchi type I and V models. For the Bianchi type I model, the β+ function
takes the same form as (8). In [13], the same calculi have been done for the
Bianchi type I model without a perfect fluid and the same forms for β± have
been found: hence, the expression of the anisotropic part of the metric is not
modified by the presence of a perfect fluid.

Now, it is possible to express the potential as a function of G and Ω. From
the Eq. (7) and expressions for β±, we derive for the potential:

U = 2(Ω̈ + 3Ω̇2)G−1 + 5 ˙G−1Ω̇ + ¨G−1 − 4σG−1e−2Ω−2β+1 − 8πρ0(2 − δ)e−3δΩ

(9)

The overdot means a derivative with respect to proper time t. From the con-
straint equation and the expression (9) for the potential, we deduce the form of
the Brans-Dicke coupling function:

ω = 2G−1φ̇−2φ[
−Ω̈ − 3Ω̇2 + 1/2G ˙G−1Ω̇ − 1/2G ¨G−1 + 5σe−2Ω−2β+1 − 4πρ0δGe−3δΩ

]

(10)

The Eqs. (8–10) constitute a solution of the HST field equations for the Bianchi
type I and V models depending on the quantities Ω, G and φ. Similar results
have been found recently in [14] for FLRW models and with G−1 = φ. Here,
we do not specify the gravitational function form such that it is clear that our
results apply to any form of G(φ). We could also use a conformal transformation
and thus only study a minimally coupled scalar tensor theory. However, reversing
the conformal transformation to recover some results for varying G is not always
workable and thus we discard this method from this paper.

4 Potential asymptotical behaviour

In what follows, we are going to determine what are the potential asymptotical
dominant terms depending on conditions on G and Ω. To reach this goal, we
will use the following lemma:

Lemma 1 Let F1 and F2 be two positive functions and let us define the sign
”<” as meaning ”<<” or ∝. For any two positive functions F1 and F2 such that
| F1 |<| F2 |, when t → +∞ then | Ḟ1 |<| Ḟ2 |. Here, || stands for absolute value
when Fi is mototonic and for absolute and mean values when it is oscillating.

This lemma is always true for monotonic functions but is limited for oscillating
ones. Hence, when F1 or/and F2 are oscillating functions such that | F1 |<| F2 |,
writing that the means values of Ḟ1 and Ḟ2 are such that | Ḟ1 |<| Ḟ2 | means that
asymptotically the derivative of F1 have to be continually larger than the one of
F2. Hence, the lemma does not hold for F1 = 3Ω−1 and F2 = sin2(10Ω)Ω−1 but
for F1 = 3Ω1/2 and F2 = sin2(10Ω)Ω−1. When the lemma is true, | F1 |>| 1 |
means that F1 is asymptotically larger or proportional to a normalized constant.
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| F1 |>| F2 | means that F1 is asymptotically larger or proportional to the
function F2: in the first case, the left term is negligible with respect to the right
one, in the second case, we can choose arbitrarily which term we want to neglect
since our goal is to know the asymptotical behaviour of the potential.

For sake of simplicity, we will put K = G−1. Following the lemma, we have
the following inequalities:

• | Ω |<| ln t |⇒| Ω̇ |<| t−1 |⇒| Ω̇ |−1>| t |⇒| Ω̈
Ω̇2 |>| 1 |⇒| Ω̇2 |<| Ω̈ |

• | Ω |<| lnK |⇒| Ω̇ |<| K̇K−1 |⇒| KΩ̇ |<| K̇ |⇒| KΩ̇2 |<| K̇Ω̇ |
• | Ω |<| ln K̇ |⇒| Ω̇ |<| K̈K̇−1 |⇒| K̇Ω̇ |<| K̈ |

• | eΩ |<| K
1

2−3δ |⇒| e(3δ−2)Ω |<| K−1 |⇒| Ke−2Ω |<| e−3δΩ |
• | Ω |>| ln t |⇒| Ω̇eΩ |>| 1 |⇒| e−2Ω |<| Ω̇2 |⇒| Ke−2Ω |<| KΩ̇2 |1

• | ln Ω̇ |<| lnK |⇒| Ω̈
Ω̇

|<| K̇
K |⇒| KΩ̈ |<| K̇Ω̇ |2

From them we get the Fig. 1, showing the potential asymptotical dominating
terms at late times. Note that an identical figure exists for the quantity ωφ̇2φ−1.
In the next section, from Fig. 1, we discuss in which conditions the potential
may tend to a constant, vanishing or not, for late times.

5 Discussion

In this discussion, we will assume that the Universe is expanding at late times,
i.e. Ω → +∞ when t → +∞ and we will look for the potential asymptotical
behaviour.

We first consider the case for which K tends to a non vanishing constant.
Then, in Fig. 1, the only branches we have to examine are such that | Ω |>|
lnK |. Moreover, we will have K̈ → 0 and e−3δΩ < Ke−2Ω . This last inequality
means that the curvature will not change the general behaviour of the potential
when it will diverge or tend to a non vanishing constant. It may only affect the
way it vanishes.

Hence, in presence of a late time accelerated expansion for the Bianchi type
I model, when | Ω |<| ln K̇ |, the potential tends to the dominating term among
(Ω̇2K, K̈, e−3δΩ). The two last ones asymptotically vanish. It diverges as Ω̇2 if
Ω >> t. It will tend to a constant if Ω ∝ t. Otherwise, it will be vanishing. It
is the same if | Ω |>| ln K̇ | or for the Bianchi type V model. As above written,
the only differences come in the case for which U vanishes: the variation of U to
0 may differ depending on which model we consider.

For the Bianchi type I model, when no late time accelerated expansion is
present and | Ω |<| ln K̇ |, the potential tends to the dominating term among

1In this inequality, we have used | Ω |>| ln t |⇒| eΩ |>| t |. This is correct if Ω and t diverge
positively , that we will assume in the discussion.

2Note that, in general, | F1 |<| F2 |�⇒| ln F1 |<| ln F2 | because | ln | is not a monotonic
function and, for instance, F1 may vanishes faster than F2 diverges.
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Ω < ln t

yes no

yes no

Ω K < KΩ 
  .2 ..

Ω K > KΩ 
  .2 ..

Ω < ln K Ω < ln K

yes no

Ω < ln K
  .

Ω K < K Ω 
  .2   .  .

Ω K > K Ω 
  .2   .  .

Ω < ln K
  .

yes no yes no

K Ω < K
  .  . ..

K Ω > K
  .  . ..

K Ω < K
  .  . ..

K Ω > K
  .  . ..

yes no yes no

Ω K > Ω K
..   .  .

Ω K < Ω K
..   .  .

Ω K > Ω K
..   .  .

Ω K < Ω K
..   .  .

e     K < e- 3 δ Ω−2 Ω e     K > e- 3 δ Ω−2 Ω

BI BV

(K , e        )
..

- 3 δ Ω

1

1

(K , e        )
..

- 3 δ Ω (K , K e     )
..

- 2 Ω

BI BV

(ΚΩ , K, e        )
..

- 3 δ Ω
..

1

(ΚΩ , K, e        )
..

- 3 δ Ω
..

(ΚΩ , K, K e      )
..

- 2 Ω
..

BI BV

(ΚΩ , e       )
..

- 3 δ Ω 1

(ΚΩ , e       )
..

- 3 δ Ω (ΚΩ , K e      )
..

- 2 Ω

BI BV

(ΚΩ , K, e        )
..

- 3 δ Ω
..

1

(ΚΩ , K, e        )
..

- 3 δ Ω
..

(ΚΩ , K, K e      )
..

- 2 Ω
..

BI BV

(Ω K,e       )
  .  .

- 3 δ Ω 1

(Ω K,e       )
  .  .

- 3 δ Ω (Ω K,K e    )
  .  .

- 2 Ω

BI BV

(ΚΩ , e       )
..

- 3 δ Ω 1

(ΚΩ , e       )
..

- 3 δ Ω (ΚΩ , K e      )
..

- 2 Ω

2

2

Ω K > K Ω  et 
  .2   ..

Ω K > e     K
  .2 −2 Ω

Ω < ln K
yes no

Ω K < K Ω 
  .2   .  .

Ω K > K Ω 
  .2   .  .

Ω < ln K
  .

yes no

Ω < ln K
  .

yes no

K Ω < K
  .  . ..

K Ω < K
  .  . ..

K Ω > K
  .  . ..

K Ω > K
  .  . ..

BI BV
BI BV

BI BV
BI BV

(K , e        )
..

- 3 δ Ω

(K , e        )
..

- 3 δ Ω 1
1 1

1

K
..

(Ω K,e       )
  .  .

- 3 δ Ω

(Ω K,e       )
  .  .

- 3 δ Ω
Ω K
  .  . (K Ω , K)

  . 2 ..

(K Ω , K, e       )
  .

- 3 δ Ω2 ..

(K Ω , K, e       )
  .

- 3 δ Ω2 ..
(Ω   K, e       )
  . 2 - 3 δ Ω

(Ω   K, e       )
  . 2 - 3 δ Ω

Ω   K
  . 2

ln Ω < ln K
  .

ln Ω < ln K
  .

e   < KΩ 1/(2−3δ)

Fig. 1. This diagram shows the asymptotical dominant terms in the potential when
t → +∞ and the Universe expands following the inequalities of Sect. 4. Ellipsoid
indicates if an equality is (yes) or is not respected (no). Depending on the answer,
a quantity can be neglected: this is the meaning of the rectangles that come below
each ellipsoid. Dotted rectangles are the dominant term in the potential when all these
quantities have been neglected. The number in the circles indicates how two parts of
the figure may be joined and BI and BV stand respectively for the Bianchi type I or
V model. To clarify the diagram the absolute value symbol ”||” have been omitted.
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(Ω̈K, K̈, e−3δΩ). The two last ones are always asymptotically vanishing. Since
| Ω̈ |< t−2, the first one vanishes too. Hence, the only possibility is that the po-
tential vanishes. It is the same if we consider that | Ω |>| ln K̇ | or the Bianchi
type V model. However, once again, the variation of the potential to 0 may differ
since, for instance, for the Bianchi type V model, e−3δΩ have to be replaced by
Ke−2Ω or, when | Ω |>| ln K̇ |, the K̈ term disappears.

Thus we get the following result allowing to know if a cosmological constant is
naturally explained by HST when the gravitational function tends to a constant:

Theorem 1 When the Universe is asymptotically expanding and the gravita-
tional function tends to a non vanishing constant, the potential tends to a cos-
mological constant only if eΩ → eαt, α being a constant. The potential vanishes
when eΩ varies slower than eαt and diverges otherwise.

An important case from the point of view of isotropisation is when eΩ → tm.
Then, we calculate that U vanishes as t−2 for the Bianchi type I model and as
t−2 or t−2m when respectively a late time accelerated expansion occurs or not
for the Bianchi type V model. These results are in agreement with isotropisation
of the Bianchi type I and V models studied in [15] and [16]. For the Bianchi type
I model, it has been shown that when the scalar field is minimally coupled, the
metric functions tend toward a power or exponential laws of time and the poten-
tial decreases as t−2 or a constant respectively. For the Bianchi type V model,
the same result holds since isotropisation always leads to late time accelerated
expansion and flat Universe.

As a second case, we assume that K diverges slower than or in the same way
as t2. Then 1 <<| K |< t2, thus implying | K̇ |<| t | and | K̈ |< 1.

When a late time accelerated expansion arises, we will always have | Ω |>|
ln K̇ | since the maximum value of K̇ is t. Hence we will only consider these
branches on Fig. 1.

If | Ω |<| lnK |, the potential will tend to a constant if it is the same for
Ω̇K̇. Since we have | Ω |<| lnK |, it follows that | Ω̇K̇ |<| K̇2K−1 |. Thus,
when U → Λ, this last inequality is such that 1 <| K̇2K−1 | which implies
that | K |> t2 whereas we have assumed it is smaller than t2. It follows that the
potential will tend to a non vanishing constant only if | K |∝ t2 and | Ω |∝| ln t |.
Otherwise, it may diverge or vanish if respectively Ω̇K̇ diverges or vanishes.

If | Ω |>| lnK |, U → Λ only if it is the same for Ω̇2K. Except the above
inequalities defining this case, there is no additionnal restriction on the asymp-
totical behaviours for K and Ω allowing this behaviour. For instance, U is a
constant when K → t3/2 and Ω̇ → t−3/4: one easily checks that the expansion is
accelerated, | Ω |>| lnK | and | Ω |>| ln K̇ |. Hence the asymptotical behaviour
for the potential is ruled by the product Ω̇2K: U may tend to a constant, diverge
or vanish if respectively Ω̇2K tends to a constant, diverges or vanishes.

When there is no late time accelerated expansion, for the Bianchi type I

model with | Ω |<| ln K̇ | and | ln Ω̇ |<| lnK |, the potential will tend to a
constant if K ∝ t2 only. For the other cases, let us assume that K is smaller
than t2. Then, the potential will tend to a constant only if it is the case for
Ke−2Ω or KΩ̈ or Ω̇K̇. However, it will occurs if e−2Ω or Ω̈ or Ω̇ are larger than
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respectively t−2 or t−2 or t−1. But this is impossible since there is no acceler-
ated expansion. Hence, | K |∝ t2 and | Ω |∝| ln t | are necessary and sufficient
conditions such that the potential tends to a constant.

If the potential does not become a constant, it vanishes for the Bianchi type
I model since | Ω |<| ln t | and | K |< t2. It diverges or vanishes for the Bianchi
type V model respectively depending on the behaviour of Ke−2Ω .

A third case is when | K |>> t2 and thus | K̈ |>> 1. Then K, K̇ and K̈
have the same sign and the potential will diverge but if it exists one term able
to cancel the divergence of K̈ at least. Let us examine the expression (9). It can
not be the e−3δΩ term since it vanishes nor the terms containing Ω̇ since we
have assumed an expanding Universe and thus they have the same sign as K̈.
It can not be the G−1e−2Ω−2β+1 term because β+1 is an integration constant
and then would cancel K̈ for some zero measure values of β+1. Hence, the only
terms able to cancel the divergence of K̈ would be 2Ω̈K and should be such
that Ω̈ be negative (i.e. no late time accelerated expansion). However, in this
case, G−1e−2Ω−2β+1 diverge because eΩ < t. Thus, once again, the potential will
diverge but for zero measure values of β+1. Hence, we conclude that, except for
zero measure cases of the integration constant β+1, the potential diverges when
| K |>> t2.

The last possiblity is when K vanishes. When there is no late time accelerated
expansion, the potential vanishes since the derivatives of K and Ω also vanish.
If there is a late time accelerated expansion and eΩ < et, the potential vanishes
since | Ω̇ |< 1. If there is a late time accelerated expansion with | Ω |<| lnK |
and | Ω |<| ln K̇ |, it vanishes again. If | Ω |<| lnK | and | Ω |>| ln K̇ |, it
vanishes or diverges if Ω̇K̇ respectively vanishes or diverges. If | Ω |>| lnK |, it
vanishes or diverges if Ω̇2K respectively vanishes or diverges.

Again, these results allow knowing if a cosmological constant is naturally
explained by HST when the gravitational function does not tend to a constant:

Theorem 2 Let α be a constant, H = Ω̇ the Hubble function and G the grav-
itational function. When the Universe is asymptotically expanding and G does
not tend to a non vanishing constant, we have the following results:

• When the gravitational function vanishes faster than t−2, the potential di-
verges.

• When the gravitational function vanishes slower than or as t−2, then in
presence of a late time accelerated expansion when | Ω |<| lnG−1 |, the
potential tends to a constant if | G−1 |∝ t2 and eΩ ∝ tα. Otherwise,
it vanishes/diverges if it is the case for H ˙G−1. When | Ω |>| lnG−1 |,
the potential tends to a constant, vanishes or diverges if it is the case for
H2G−1.

• When the gravitational function vanishes slower than or as t−2 and there
is no late time accelerated expansion, the potential will tend to a constant
for the Bianchi type I model if | Ω |<| ln Ġ−1 |, | lnH |<| lnG−1 | and
G−1 ∝ t2, for any other cases if G−1 ∝ t2 and eΩ ∝ tα. Otherwise it
vanishes for the Bianchi type I model, vanishes/diverges for the Bianchi
type V model depending on the curvature term G−1e−2Ω.
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• When the gravitational function diverges and the Universe expands slower
than eαt or if there is a late time accelerated expansion with | Ω |<| lnG−1 |
and | Ω |<| ln ˙G−1 |, the potential vanishes. If Universe expands faster
than eαt and | Ω |>| ln ˙G−1 | or | Ω |>| lnG−1 |, it vanishes/diverges if
respectively H ˙G−1 or H2(G−1) vanishes/diverges.

Wald has shown that for all initially expanding Bianchi Universes (except the
Bianchi type IX model) and for General Relativity with a cosmological constant,
the Universe asymptotically reaches a De Sitter one [17]. Our results may be
interpreted as a reciprocal Wald theorem extended to the case of a varying G:

Theorem 3 Either of the three folowing conditions is sufficient for the cosmo-
logical constant asymptotic behaviour:

• the gravitational function tends to a constant and the isotropic part of the
metric toward an exponential law.

• the gravitational function vanishes as t−2 and, generally, the isotropic part
of the metric tends toward a power law.

• the gravitational function vanishes slower than or as t−2, the Universe
undergoes a late time accelerated expansion with | Ω |>| lnG−1 | and
H2G−1 tends to a constant.

To illustrate the above results, consider the following asymptotical forms for eΩ

and K:

eΩ = tm (11)
K = K0 + K1t

n (12)
(13)

where m > 0 and n are some constants. The solution thus defined is the outcome
of numerous theories such as the one defined by G−1 = φ, ω = ω0 and V = φα

when Universe isotropises [18]. In [19], power law attractors have been found for
eΩ when G−1 = K0 and U = ekφ. We deduce for the potential:

U = −4σe−2β+1(K0 + K1t
n)t−2m + 2mK0(3m − 1)t−2 + K1(−2m + 6m2 − n

+5mn + n2)tn−2 + 8πρ0(δ − 2)t−3mδ

When K1 = 0, the gravitational function is a constant and the potential tends
to vanish. When n > 2, G−1 vanishes faster than t−2 and the potential diverges
as tn−2 + tn−2m. When K0 = 0 and 0 < n ≤ 2, G−1 vanishes slower or as t−2

and the potential behaves as σtn−2m + t−2 + tn−2 + t−3mδ. In presence of an
accelerated expansion, m > 1, tn−2m < tn−2 and the potential will tend to a
constant only if n = 2. Otherwise, whatever the sign of | Ω | − | ln K̇ |, it will
vanish since n < 2. In the absence of a late time accelerated expansion, m < 1
and tn−2m > tn−2. Once again, the potential will tend to a constant if n = 2.
Otherwise, it vanishes for the Bianchi type I model and vanishes or diverges for
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the Bianchi type V model if respectively n−2m is negative or positive. Whatever
K0, when n < 0, the potential vanishes. These results are in agreement with what
we have written above

In this work we have expressed the HST field equations solutions for Bianchi
type I and V models as some functions of observational quantities G−1, eΩ and
their derivatives. Then, we have found the inequalities between these quantities
ruling the potential asymptotical behaviour and defining some conditions such
that it asymptotically mimics a cosmological constant, vanishing or not. We
conclude by comparing these conditions with the observations. Since they seem
to show a late time accelerated expansion, we find 2 alternatives so that the HST
be able to solve the cosmological constant problem. The first alternative is when
the gravitational constant tends to a non vanishing one. The above results show
that the dynamical behaviour of the metric should be such that t < eΩ ≤ eαt.
Then the potential tends to a non vanishing constant if the Universe tends
toward a De Sitter model, otherwise it vanishes. A second alternative is when
G tends to zero. Then, its variation should be like or slower than t−2 otherwise
the potential would diverge, which will not be compatible with a cosmological
constant. The behaviour of the potential depends on the variation of eΩ with
respect to G−1. If eΩ < G−1(eΩ > G−1), the potential will tend to a non
vanishing cosmological constant only if G−1 → t2 and eΩ → tα(respectively
H2G−1 → const). Otherwise it will vanish if H ˙G−1 → 0(respectively H2G−1 →
0). In both cases, when the potential tends to a non vanising constant thus
respecting the reciprocal Wald theorem, the cosmological problem is solved only
if the corresponding solution is an attractor, thus avoiding fine tuning problem.
Otherwise, when it disappears, the cosmological problem is solved if the Universe
is sufficiently old. This work presents new theoritical constraints on observables
eΩ , H and G−1 allowing to get asymptotically a small cosmological constant
compatible with a late time accelerated expansion and a small gravitationnal
constant for scalar tensor theories. Checking observationnaly the above limits
would qualify or disqualify the presence of a massive scalar field mimicking an
effective cosmological constant in our Universe if geometry is of Bianchi types I
or V . A next step would be to study HST properties with such constraints.
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